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Figure 1: We introduce MLMOVE, a bot for playing CS:GO Retakes that features a movement controller trained on logs from 123 hours
of professional human play. The controller generates movement actions for both teams of players in 0.5 ms (amortized per-step cost) on a
single CPU core. The figures plot the fraction of time players spend in different regions of the map, aggregated over 1430 rounds of play.
The distribution of the MLMOVE bots playing against themselves (second column) mimics the overall distribution of human play (HUMAN,
first column). A well-engineered rule-based bot (RULEMOVE) and the bots currently shipping in CS:GO (GAMEBOT) do not replicate the
human movement distribution.

Abstract

In multiplayer, first-person shooter games like Counter-Strike: Global Offensive (CS:GO), coordinated movement is a critical
component of high-level strategic play. However, the complexity of team coordination and the variety of conditions present
in popular game maps make it impractical to author hand-crafted movement policies for every scenario. We show that it is
possible to take a data-driven approach to creating human-like movement controllers for CS:GO. We curate a team movement
dataset comprising 123 hours of professional game play traces, and use this dataset to train a transformer-based movement
model that generates human-like team movement for all players in a “Retakes” round of the game. Importantly, the movement
prediction model is efficient. Performing inference for all players takes less than 0.5 ms per game step (amortized cost) on
a single CPU core, making it plausible for use in commercial games today. Human evaluators assess that our model behaves
more like humans than both commercially-available bots and procedural movement controllers scripted by experts (16% to 59%
higher by TrueSkill rating of “human-like”). Using experiments involving in-game bot vs. bot self-play, we demonstrate that
our model performs simple forms of teamwork, makes fewer common movement mistakes, and yields movement distributions,
player lifetimes, and kill locations similar to those observed in professional CS:GO match play.

CCS Concepts
• Software and its engineering → Interactive games; • Computing methodologies → Learning from demonstrations;
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1. Introduction

Competitive, multiplayer first-person shooters (FPS) are extraor-
dinarily popular. Multiple titles have tens of millions of users ev-
ery month [Yin23; DAn23]. CS:GO is one of the seminal titles in
the genre, with millions of players each day [Cha24]. AI agents
(“bots”) that can effectively imitate human players have the poten-
tial to improve human players’ experiences by serving as training
partners for new players and teammates for experienced players
when their friends are not available [Jus22].

It is challenging to create a human-like bot for a complex, team-
based FPS game like CS:GO. Existing approaches based on hand-
crafted behavior rules or learned models struggle to generate real-
istic, coordinated player movement due to:

1. Complexity of human movement. Hand-crafted, rule-based
bots remain the prevalent practice in modern multiplayer FPS
games. However, it is not tenable to encode rules spanning the
massive number state combinations of 10 players in a complex
3D world. As a result, hand-crafted bots lack realism because
they fail to react appropriately to a diverse set of game situa-
tions.

2. Matching human movement distributions. While reinforce-
ment learning (RL) approaches have been shown to produce
highly-skilled (even superhuman) behavior [JCD*19; BBC*19;
SHS*18; LC17], it is difficult to craft reward functions that yield
policies that “move like humans”. As a result, RL bots fail to
serve as good human proxies.

3. Compute efficiency. Imitation learning (IL) approaches can
produce policies that replicate human behavior recorded in
player logs, and this approach has been deployed for player con-
trollers in turn-based games [FBB*22]. However, these games’
run-time performance requirements are orders of magnitude
(100×) lower than that of a real-time FPS game. Most commer-
cial FPS games require AI controller logic to use only a small
fraction of the total per-frame CPU budget [Dev24] (limiting
execution to a few ms on a single CPU core [Ran20; Lin20]).
Unfortunately, recent work using IL to create FPS bots [PZ22]
requires orders of magnitude (800×) more compute than this
limit.

In this paper we present the first compute efficient, data-driven
method for creating bots that move like human players in the FPS
game Counter-Strike: Global Offensive (CS:GO). Our bots, which
include a small transformer-based model [NVC*22] trained using
imitation learning, move like experienced human team players, ex-
ecute well-within the AI budget of commercial FPS games, and are
simple and fast to train. Specifically, our work makes the following
contributions:

(1) Efficient transformer-based movement controller. We
present the first compute-efficient, transformer-based model spe-
cialized for controlling movement in CS:GO, called MLMOVE.
Our model focuses on playing one map (de_dust2) and one game
mode (Retakes). Once trained through standard supervised learn-
ing, MLMOVE produces human-like movement actions in response
to evolving game dynamics. Our movement model’s amortized run-
time cost for controlling two teams of bots in a CS:GO match is
just under 0.5 ms per game step on a single CPU core (8 ms in-
ference every 16 game steps), meeting commercial game servers’

performance requirement. Human evaluators assess that our model
is more human-like than both commercially-available bots and
expert-crafted rule-based movement bots by 16% to 59% (accord-
ing to a TrueSkill rating) in the user study.

(2) Pro-player CS:GO movement dataset curation system.
We create a system for the curation of a 123-hour dataset of CS:GO
game play called CSKNOW. This is the first large scale dataset cu-
rated for learning team-based movement in a popular FPS game
featuring professional players.

(3) Quantitative positioning metrics for assessing human-
like behavior. Our goal is to produce realistic bot movement at
both short-term and longer-term (full round) time scales. We de-
fine novel quantitative metrics computed on rounds of bot vs. bot
self-play that assess how well a bot’s movement emulates human
players’ team-based positioning. We demonstrate these metrics cor-
relate with the human evaluators’ assessment of human-like game
play.

We refer the reader to https://mlmove.github.io for
the open-source system including the trained transformer-based
movement model, the rule-based execution module, the CSKNOW

dataset curation system, and the complete Python evaluation code.

2. Related Work

Human-like agent navigation is an important component of mul-
tiple applications including robotics, autonomous driving, visual
effects, and games. For example, crowd simulation in games and
visual effects endeavor to generate trajectories for hundreds or
thousands of simple agents with much less inter-agent interactions
than FPS games [Rey87; WLP16; PKL*22]; while embodied agent
motion planning research for robot navigation requires orders of
magnitude more compute resources than FPS games to interact
with a real physical world observed through cameras [ZHZ*24;
HMZB23; EHE*12].

Our work addresses the challenge of human-like motion con-
trol for groups of autonomous agents in the context of FPS games
where the agents have to perform a wide range of movements
(walk, run, jump) in a dynamic environment under extreme run-
time performance constraints. The most closely related work to
ours fall into three categories:

1. hand-crafted, rule-based controllers where developers must
manually encode all of the controller’s behaviors

2. RL-based controllers where developers specify a reward func-
tion that the controller maximizes

3. IL-based controllers where developers specify a set of human
examples that the controller imitates

Rule-Based Multi-Agent Movement Controllers. A common
abstraction for organizing rule-based controllers is behavior
trees [Isl05]. However, rule-based approaches struggle to gener-
ate human-like behavior in more complex environments, as demon-
strated by Huang et al.’s complex hierarchy for coordinating move-
ment of pedestrians through doorways [HT18]. As a result, human
evaluators find state-of-the-art rule-based bots for FPS games often
make unhuman-like movement decisions. See our final evaluation
section for more details.
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RL Multi-Agent Movement Controllers. RL agents can gener-
ate superhuman behavior in complex strategy games like Dota 2
and Go by maximizing a reward function [SSS*17; BBC*19]. RL
can also be used to train agents to win in FPS games like Doom and
Quake [LC17; JCD*19]. However, these types of RL agents are not
trained to act like humans because they are trained to maximize a
reward function for winning. Humans may struggle to collaborate
with the RL agents whose actions do not match human expecta-
tions [FBB*22]. In contrast, we use an IL-based approach to create
a bot that moves like humans.

IL Multi-Agent Movement Controllers. When trained on large,
diverse training sets of human play, IL-based controllers can gen-
erate human-like movement for a wide range of situations. Scene
Transformer [NVC*22] trained a transformer for predicting mul-
tiple pedestrians’ and cars’ trajectories on different roads over a
five-second time horizon. Scene Transformer leverages the trans-
former’s attention mechanism to learn relationships between cars,
pedestrians, and road geometry. MotionLM [SCC*23] demon-
strated that a decoder-only transformer architecture can increase ac-
curacy, since the decoder enforces causal relationships between ear-
lier and later time steps. The models used in Scene Transformer and
MotionLM cannot be directly applied to motion control for FPS
games, because their compute cost is multiple orders of magnitude
too high (their target use case is around five seconds per query).
Adapt [AAG23], a compute-optimized movement model based on
the Scene Transformer, runs in 11 ms when highly optimized for
a Tesla T4 GPU. Its compute cost is still at least two orders of
magnitude greater than the AI budget of FPS games [Cor19]. In
contrast, our transformer model, designed for learning human-like
movement in team-based FPS games, requires two orders of mag-
nitude less compute than Adapt without any hardware specific op-
timization.

Existing IL bots are also too computationally expensive for com-
mercial FPS games. [PZ22] trained a model that controls all game
behavior (not just movement) of a single CS:GO bot using ren-
dered images as input. This pixels-to-action approach (similar to
[KPH20; GHT*19]) requires a GPU for every agent, approximately
three order of magnitude higher compute than commercial FPS
games’ AI performance constraints. Additionally, [PZ22] do not
generate coordinated team behavior because they train on data
from, and test their bots in, a game mode where players typically
practice low-level mechanics without the need for intra-team coor-
dination.

Research on hybrid RL and IL training procedures enable
reward-based approaches that also generate human-like behavior.
GREIL is an RL-based crowd control policy trained with a re-
ward function based on similarity to human examples [CPV*23].
Cicero is a bot trained with piKL, which regularizes the reward
function with an IL policy to prevent drastic deviation from hu-
man behavior. Cicero is designed for Diplomacy, a turn-based strat-
egy game where action frequency is 100 times slower than in an
FPS [FBB*22]. We are not aware of a hybrid RL/IL approach for
human-like bots in an FPS game.

3. Problem Formulation: A Bot for CS:GO Retakes

Game Context. CS:GO is a multiplayer FPS involving two teams
competing for control over a map. To focus on player movement,
we concentrate our attention on a popular CS:GO practice mode
known as “Retakes” and on a single map, de_dust2. Even though
FPS games like CS:GO can have many maps, maps are designed
to have similar room and path layout characteristics that are known
to enable interesting game play; and expert players tend to hone
their strategy by playing on the same map over and over. For these
reasons, we chose to focus our study on the extremely popular
de_dust2.

The rules of CS:GO “Retakes” are the same regardless of map
choice. In each round, a bomb is planted in one of two pre-
determined regions known as bombsites A and B. (We provide an
illustrated example of a standard game map with annotated bomb-
sites regions in Section 4 of the Supplemental Material.) The bomb
will explode in 40 seconds unless it is defused. The goal of one
team, who we call the defense, is to defend the bomb until it ex-
plodes. At most 3 players are on defense. The goal of the other
team, who we call the offense, is to defuse the bomb before it ex-
plodes. At most 4 players are on offense. One defense player must
start at the bomb location while all other players can start at any
location on the map. Members of the two teams can eliminate each
other using several weapons and grenades. Without losing general-
ity, we restrict all players to the same weapon type and preclude the
use of any grenades.

State. The game state at time t consists of player states qi,t ∈ Qt
as well as global game state that consists of the map state mapt
and key events ei,t ∈ Et like players shooting or being eliminated.
Time t is tracked inside each round of CS:GO using game ticks.
For the rest of this paper, we use game ticks (steps) and time t inter-
changeably. We use B to represent {True,False} and Z to represent
the set of all integers.

1. Each player’s state qi,t = [pi,t ,vi,t ,ui, li,t ,vdi,t ,hi,t ,ri,t ] con-
sists of position pi,t ∈ R3, velocity vi,t ∈ R3, team ui ∈
{Offense,Defense}, alive status li,t ∈ B, view direction vdi,t ∈
R2, health hi,t ∈ Z, and armor ri,t ∈ Z.

2. Map state mapt = [bt ,xt ] consists of the target bombsite b ∈
{A,B} and seconds left until the bomb explodes xt ∈ R.

3. Each game event ei,t = [srci,t , tgti,t ,yi,t ] consists of source player
id srci,t ∈ Z, optional target player id tgti,t ∈ Z, and type yi,t ∈
{shoot,hurt,elimination}.

Actions. A player’s action at time step t ai,t = [mi,t ,dui,t , fi,t ] con-
sists of movement command mi,t ∈ Z specifying which direction
to move, how fast, and whether to jump or not; aim command
a.k.a view direction update command dui,t ∈R2; and fire command
f ci,t ∈ B.

Objective. Create a CS:GO bot that plays like an expert human in
a team play setting. We note that the objective of playing like an
expert human in a team setting is not the same as playing to win.

Expert human players utilize complex strategies that require spa-
tial and temporal coordination to defeat their opponents. While
these types of strategies are difficult to emulate for rule-based
agents, we observe that most team play strategies revolve around
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Figure 2: The learned movement model. (a) shows an overview of the two stages: (1) the per-player embedding stage converts the input
tokens into embedded tokens, and (2) the transformer encoder uses the embedded tokens to predict the movement commands. (b) shows
the per-player embedding stage that converts each player input token to three embedded tokens using a three layer MLP. (c) shows the
transformer encoder that uses the embedded tokens and the associated masks to predict each player’s movement command probabilities.

positioning players in optimal locations for defeating the other
team. The other in-game actions, like aiming and firing, can be
effectively predicted using rules once player positions are deter-
mined.

Therefore, in this paper, we design and build an IL-based move-
ment model capable of generating movement commands mi,t for
all players such that our bots move and position themselves like
humans; then we use rule-based execution to emulate professional
players’ aiming and firing behavior.

4. MLMOVE: A Learned CS:GO Bot

In this section, we present the algorithm and system design for our
human-like CS:GO Retakes bot MLMOVE. First, we present our
transformer-based movement model, then we present how we inte-
grate our movement model with a rule-based command executor to
create MLMOVE.

4.1. Learned Movement Model

The main challenges of building a movement model that emulates
expert human players in a team-based FPS game are the conflicting
goals of accurately predicting the distribution of complex human
actions and extremely efficient compute usage.

In an FPS game, human players not only have a complex action
space, but also demonstrate complex inter-player interaction and
coordination that are quite challenging to model in a rule-based
system. However, recent work in transformer models show how
to imitate the effect of complex human decisions and interactions
without modeling the intermediate steps (or decisions) that led to
the final actions.

The architecture of our movement controller (Figure 2) is in-
spired by Scene Transformer [NVC*22], one of many [AAG23;
SCC*23; YWOK21] transformer-based multi-agent motion predic-
tion system for pedestrians and autonomous vehicles. The Scene

Transformer encodes the state of each agent as input tokens and
leverages attention to learn the relationships between all the agents.
Like Scene Transformer, our movement controller can also benefit
from the transformer architecture’s ability to capture rich player in-
teractions with the attention mechanism, process players’ state in
any order due to the permutation invariance of input tokens, and
handle eliminated players with attention masking [VSP*17].

However, Scene Transformer’s query latency and compute re-
sources were orders of magnitude higher than what was acceptable
for FPS game adoption. Our key insight was to leverage the sig-
nificant differences between the target applications of FPS games
and autonomous vehicles to make architecture and system design
choices to create a movement model that: (a) is able to emulate the
effect of complex human team play strategy and interactions in an
FPS game, and (b) can be executed within the strict compute con-
straint required by FPS game servers. We highlight two of these
differences below.

First, multi-agent motion prediction systems for autonomous ve-
hicles must support changing road geometry (dynamic road graphs)
as road conditions can change as vehicles travel from one part of
the real world to another. On the other hand, professional players
for FPS games tend to play and compete on the same game map
for years, and map geometry and layout are static throughout the
game, so it’s perfectly reasonable to design movement models that
are trained for one map. This design choice allowed us to reduce
the number of input tokens significantly, and as a result, the com-
plexity of our attention layers, without impacting our model’s ap-
plicability for our targeted use case. Note that each attention layer’s
complexity is proportional to the square of the number of input to-
kens [VSP*17]. To support multiple maps, we can pre-train our
model for each map we want to support and make them available
to our MLMOVE bot. (We would of course also have to curate a
training set for each map as well, just like the training dataset for
Scene Transformer includes data spanning multiple map regions.)

© 2024 Eurographics - The European Association
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Second, Scene Transformer predicts motion trajectories for up
to five seconds, a standard latency measure for pedestrian motion
prediction. To capture the causal dependency from later to ear-
lier predicted positions across the same five second time interval,
Scene Transformer uses an encoder-decoder architecture. For an
FPS game where human players can make navigation decisions
at 125 ms intervals (due to average keyboard latency), the motion
controller only needs to predict movement trajectories that hold for
125 ms (the time interval at which it is invoked), an order of magni-
tude lower than five seconds. For our use case, we can use a simpler
and more efficient encoder architecture where all output tokens are
computed in parallel. Additionally, the shorter prediction time hori-
zon also translates to fewer input and output tokens and reduced
complexity in our attention layers.

These application driven design choices enabled us to create a
model that can predict human-like movement decisions for two
teams of CS:GO players (10 total players) within 8 ms per query
on a single CPU core.

Model Input. Our movement model’s input is a sequence of 10
tokens, each token describing a player’s current state. CS:GO logs
contain up to 10 players at any time, up to five on each team. This
is a broader range of players than in Retakes. We train our model
on 10 input tokens to enable it to generalize to a wider range of
situations. The feature vector of each token is [pi,t , fi,t ,di,t ], where
fi,t = [li,t ,ui,bt ,xt ] and di,t is a set of derived features that approx-
imate information not contained in the game logs like visibility
and team communication about strategy. Each token starts with the
player’s position pi,t , alive status lit , and team association ui. We
also include in each token the global map states of bomb location
bt and remaining time for bomb explosion xt , information known
to all players. We define the derived features in Section 1.1 of the
Supplemental Material. We found that the derived features can aid
attention in limited situations.

Model Output. Our movement model’s output is a sequence of to-
kens, each token describing a player’s movement command: which
direction to move, how fast, and whether to jump. To capture the
multi-modal and stochastic nature of player movement, we repre-
sent a movement command as a discrete probability distribution
with 97 options. Each option corresponds to a combination of one
of 16 angular directions, three different movement speeds, two
jumping vs not jumping states; plus a separate option for standing
still. Movement commands aren’t recorded in CS:GO logs. We use
heuristics to infer the movement commands from position/velocity
information in the logs [PZ22]. We found discretizing direction uni-
formly into 16 absolute angles is sufficient to navigate game map
details like thin ledges.

Model Architecture. The full architecture of the movement model
is depicted in Figure 2(a). Each input player token is converted by
an embedding network to an embedded token of dimension match-
ing that of the transformer’s attention layers; then each sequence
of 10 embedded tokens corresponding to the states of 10 players
are processed by the transformer to yield the movement command
probabilities for the 10 players.

We use a learned embedding (Figure 2(b)) to convert input player
tokens into vectors of dimension 256. Our embedding network con-
sists of three linear layers, with LeakyReLU activations in between

the linear layers. Our transformer encoder (Figure 2(c)), consists
of four identical single-head self attention layers of dimension 256.
Like [VSP*17], we use a learned linear transformation and softmax
to convert the outputs of our attention network to predicted proba-
bility of the output tokens (the player movement commands in our
case).

To support eliminated players, we use transformer’s masking
feature. A transformer’s attention layer computes the attention
(connection) between all token pairs in the input sequence except
for those that are masked out. So we set mask(i, t) = 1 for each
token of an eliminated player (li,t = false), to remove attention be-
tween that player and all other players. Also, we restrict the loss
computation to only use P(mi) for players that are alive. Together
with attention masking, this ensures eliminated players have no im-
pact on our model’s movement predictions for live players.

To learn temporally coherent motions, our model outputs pre-
dictions not only for the immediate next action (0 ms into the fu-
ture) but also for actions at 125 ms and 250 ms from the current
time. This is achieved by replicating each player’s embedded to-
ken for time t three times, and summing each player’s embedded
token with the positional encoding of the three timestamps, to cre-
ate distinctive embedded tokens for current time t, t +125 ms, and
t +250 ms. Like [VSP*17; NVC*22], we use sinusoidal positional
encoding for the player’s in-game map position and for the three
temporal positions represented as timestamps.

A well known problem in imitation learning is the inertia prob-
lem, where models trained on sequences are biased to repeating
recent actions, since this type of repeating “what I did last” be-
havior tends to dominate the dataset [DJL19; CSLG19; SHYK23].
This can lead to the failure to learn important movements like ve-
locity change or (intentionally acted) “erratic” movements in com-
bat, because they are both rare (low probability) events in the train-
ing dataset. We address the inertia problem using a simple solution
that improves our model’s prediction accuracy and efficiency: our
model input consists only of “current” player states. The ablation in
Section 6.3.5 shows our solution’s effectiveness, as adding prior in-
put states leads to less human-like map occupancy and kill location
distributions.

Model Training We train the movement model using standard su-
pervised learning where we minimize the cross-entropy loss be-
tween the probability distributions of the predicted movement com-
mand and the ground truth movement commands in the dataset.

We train using the CSKNOW dataset (described Section 5) and
perform an 80/20 train-test split: 5655508 train data points (98
hours at 16 Hz) and 1429953 test data points (25 hours at 16 Hz).
Since there is a strong correlation between data points in the same
round, we assign all data points in each round to the same subset.
Once grouped into train/test subsets, we randomly sort data points
irrespective of their round. We use the same train/test split for all
training runs. To improve the model’s ability to generalize, we add
random Gaussian noise with mean 0 and variance 20 CS:GO units
(less than a player’s width of 32 units) to the player positions (see
Figure 2(b)).

We train for 20 epochs with a batch size of 1024, an initial learn-
ing rate of 4e-5 controlled by the Adam optimizer with default

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



6 of 12 D. Durst et al. / Learning to Move Like Professional Counter-Strike Players

Rule-Based 
Execution Module (8 ms)

Move Aim Fire

CS:GO Server (8 ms)

Server Command

Game State

Learned
Movement

Model (125 ms)

Movement Command

MLMove Bot Architecture

Figure 3: MLMOVE Architecture: MLMOVE uses the learned
movement model to generate movement commands, then it uses a
rule-based execution module to convert these commands into key-
board actions and also to generate aiming and firing commands.
CS:GO server executes all player commands and sends the updated
game state back to the bot.

configuration (βs = (0.9, 0.999), eps = 1e-08, and weight decay
= 0). Training takes 1.5 hours on a single computer with a Intel
i7-12700K CPU, 128 GB of RAM, and an NVIDIA RTX 4090.

4.2. Integrating Movement Model into a CS:GO Bot

The resulting trained model predicts the movement for all play-
ers efficiently enough to be deployed in a commercial FPS game
server. Specifically, the memory requirement for our model’s 5.4M
parameters is 21 MB; and the inference latency (time it takes to pre-
dict the movement of all players) of our trained movement model
deployed in C++ using LibTorch and TorchScript [PyT24] is 8 ms
with an IQR of 0.6 ms on a single core of a Intel Xeon 8375C CPU.

We use a modular approach shown in Figure 3 to integrate our
learned movement model into a full CS:GO bot MLMOVE. The
input to MLMOVE is the current game state and output of the ML-
MOVE is a sequence of game server commands that can be pro-
duced and sent to the server by a regular human player.

The core system of MLMOVE consists of our learned move-
ment model and the rule-based execution module. Every 125 ms
(16 game ticks), MLMOVE requests the learned movement model
to predict the movement commands for all players using the current
game player state as input. The bot caches and reuses the predicted
movement commands for the subsequent 125 ms. The rule-based
execution module is executed every game tick to emulate human
mouse movement latency used for aiming. It converts movement
commands at current time t made by our learned model into hu-
man players’ keyboard navigation commands. The movement com-
mands are only updated once every 125 ms to emulate human key-
board press latency; therefore, the amortized compute cost for our
learned movement model for each game tick (frame) is 0.5 ms.

Our rule-based execution module also generates aiming and fir-
ing commands based on the current game state and player posi-
tions; the rule-based execution module sends all the “machine gen-
erated” game commands to the server, which will execute the com-
mands and update the game state for the next frame.

For human and bot mixed play, the game server just replaces bot
generated commands with the corresponding human player’s com-
mands. As addressed in Section 6, we primarily test games consist-
ing only of bots. However, the server allows any mixture of human
and bot players for a maximum of ten players.

Aiming and firing We use standard techniques to handle aiming
and firing. If no enemy is visible, the aiming module uses a prob-
abilistic occupancy map to pick a target where enemies are likely
to appear, emulating human-like predictive aim [Mor88; Isl13]. If
at least one enemy is visible, the module selects one target and
tracks them until they are no longer visible. The aim module gen-
erates a smooth trajectory of view direction updates using a semi-
implicit Euler method [BSK20]. The fire execution module emits
fire commands when the crosshair aligns with an enemy’s axis-
aligned bounding box. A distance-based lookup table controls the
fire command frequency, shooting shorter and more controllable
sequences at farther enemies that are harder to hit.

For specific implementation details, see Section 3 of the Supple-
mental Material.

5. CSKnow Dataset Curation System

There is a scarcity of open datasets for learning movement control
for FPS games. Prior CS:GO datasets focused on long-term out-
comes like win probability, so they captured game state at too low
frequency for evaluating movement commands at every 125 ms.
For example, ESTA contains professional game play with data
points every 500 ms [XS22], and PureSkill.GG contains amateur
game play with no guarantees on data capture frequency or even if
some data were dropped [Cri24].

We present CSKNOW, the first dataset for learning team-based
CS:GO movement featuring professional players. The dataset con-
tains 123 hours of play sampled at 16 Hz. The data comes from
over 17K rounds, features 2292 unique players, 513K shots, and
29K eliminations. See Section 1 of the Supplemental Material for
the subset of game state extracted in CSKNOW.

We created a system to curate the 123 hour dataset from logs
of 1156 hours played on the de_dust2 map by professional players
between April 2021 and November 2022. We downloaded the logs
from HLTV [HLT24]. The logs contain game play from the com-
plete CS:GO game mode, not just the Retakes practice one. Unlike
the Retakes mode, the complete game mode requires five on each
team at the start of each round and involves an earlier stage where
teams compete to plant the bomb. We filter the data in CSKNOW to
game ticks when the bomb has been planted and at least one player
is alive on both teams, a super-set of Retakes. This filter ensures
our dataset is focused enough to be representative of Retakes mode
play style while still broad enough to cover a diverse range of game
play.

Figure 4 shows that CSKNOW covers a diverse range of play
situations: players start in a wide variety of starting positions, and
over the course of play move into all locations on the map. Since
bomb plants in a full game occur in the middle of CS:GO rounds,
the number of players that are alive on each team at the time of
bomb plant varies significantly in the data set.
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Figure 4: CSKnow is a diverse dataset of 123 hours of professional CS:GO play. (a) Density of player positions at the start of each round.
Players start in a wide range of positions. (b) Density of player positions throughout the entire round. Players visit all areas of the map.
(c)-(d) Rounds start with different numbers of offense and defense players, and can end almost immediately or last until the explosion (e).
Note: (a)-(b) graphs are log scale, (c)-(e) graphs are linear scale.
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Figure 5: Human evaluators consistently rated MLMOVE’s behav-
ior as more human than RULEMOVE and GAMEBOT.

6. Evaluation

The primary goal of our work is to produce human-like movement
for an FPS game. To evaluate how well we achieved this goal,
we first conducted a small-scale user study (inspired by BotPrize
2010 [Hin10; Hin09]) where human evaluators rank movement in
videos of games played by humans and bots, and an exploratory
study where humans play with and against the bots. Then, we per-
formed a large-scale quantitative comparison on the distributions of
movement trajectories and key outcomes from bot vs. bot self-play
relative to those from professional human play. Through this com-
bination of small-scale human ranking and large-scale quantita-
tive analysis of outcome distributions, we present the first compre-
hensive evaluation of human-like team-based movement for multi-
player FPS bots.

6.1. Experiment Conditions.

We compare four different player configurations:

• HUMAN. Replay of the actual human data, taken from the
CSKNOW dataset.

• MLMOVE. Our bot with a learned movement controller, as de-
scribed in Section 4.

• RULEMOVE. A bot with a rule-based movement controller im-
plemented by the authors. The bot uses the same rule-based aim
and firing controllers as MLMOVE. This bot was developed over
several months by a skilled CS:GO player and should be con-

sidered a strong baseline for CS:GO bot design. Section 3 of the
Supplemental Material provides further detail on this bot’s logic.

• GAMEBOT. The bots currently deployed in the commercial
CS:GO game. Since it is third-party commercial software, the
implementation details of this bot are unknown. It differs from
MLMOVE and RULEMOVE in movement, aiming, and firing.

There are 1430 rounds in the CSKNOW test dataset that meet Re-
takes conditions. Our results analyze play from full Retakes rounds
where all players are controlled using the same player configura-
tion, such as MLMOVE vs MLMOVE with no HUMAN in the game.
In the user study, we randomly sample 8 rounds across a range
of initial conditions and record 32 videos, one for each combina-
tion of player configuration and round. For each round, participants
viewed all four videos in a random order without labels identify-
ing the player configuration. We used CS:GO to generate videos
of game play, rendered from a birds-eye camera position and angle
that best enabled analysis of team-based movement. For evaluator
clarity, we used the “x-ray vision” rendering mode so evaluators
can see players behind walls. The videos have a median length of
17 seconds and an IQR length of 17 seconds. We provide all 32
videos as well as the specific prompts of the study in the Supple-
mental Material. In the quantitative self-play experiments, we ran
each player configuration through five iterations of all 1430 rounds
in order to account for randomness in game play.

6.2. Human Assessment

To assess the realism of bot motion, we conducted a within-subjects
study where we asked human evaluators to watch CS:GO game
play videos depicting both human and bot play [POC*23]. For each
of the eight rounds described in Section 6.1, participants were asked
to rank player configurations based on how well player movement
matched their “expectation of how humans would move in that sit-
uation.”

Evaluators. We recruited fifteen evaluators with CS:GO experi-
ence ranging from novice (never having played) to expert. Five of
them achieved a rank of “Global Elite”, the highest CS:GO player
rating; and four had a rank of “Supreme Master First Class“, the
second highest.

Quantitative Ranking Results. Our study produces 120 rankings
of the player configurations. Each ranking is an ordering of the four
player configurations’ similarities to expected human behavior in
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Table 1: Median ± IQR earth mover’s distance (EMD) between
map occupancy distributions (Section 6.3.1), player kill location
distributions (Section 6.3.4), round lifetime distributions, and shots
per kill distributions created from bot self-play and from real hu-
man data. In all metrics, self-play using MLMOVE yields distri-
butions that are more similar to HUMAN than RULEMOVE. We
attribute the increased distance between lifetime distributions from
MLMOVE and human play to an increased number of long life-
time trajectories caused by instances of passive MLMOVE play
(see Section 6.3.4).

EMD Type MLMOVE RULEMOVE GAMEBOT

Map Occupancy 8.2 ± 0.5 14.7 ± 1.7 15.2 ± 0.3
Kill Locations 6.7 ± 0.1 15.4 ± 0.7 16.4 ± 0.7

Lifetimes 4.9 ± 0.4 7.8 ± 0.0 1.1 ± 0.0
Shots Per Kill 2.1 ± 0.1 5.6 ± 0.0 4.9 ± 0.2

one initial condition according to one evaluator. To enable compar-
ison between player configurations across all rankings, we use the
TrueSkill rating [HMG06] to aggregate the data into a single rat-
ing for each player. TrueSkill is a generalization of the Elo [Gli95]
rating system to multiplayer environments. In our work, a higher
ranking means that a player configuration better matches the eval-
uators’ expectations of human behavior.

In Figure 5 we plot the mean and standard deviation of the
TrueSkill rating value for each player configuration. Unsurpris-
ingly, HUMAN achieves the best rating, whereas MLMOVE gener-
ates motion that matches evaluator expectations for human move-
ment significantly more frequently than the other bots. The results
also suggest that RULEMOVE is a strong baseline, since it achieves
a higher rating than GAMEBOT, which is in commercial use to-
day. The results are statistically significant according to a Kruskal-
Wallis test (H=333, p<1e-5) and Dunn post-hoc tests (all p<1e-5).

Qualitative User Feedback In addition to ranking the player con-
figurations, subjects were also asked to explain their decisions. Ex-
pert subjects report that MLMOVE players demonstrated coarse-
grained teamwork like “trading”: killing an enemy while that en-
emy was distracted engaging someone else. Trading is a result
of team-based movement, as two teammates must be in the right
places at the right time to setup and take advantage of an en-
emy’s momentary weakness. However, they also reported observ-
ing teamwork-related MLMOVE mistakes, such as being overly ag-
gressive when trading, overly passive when supporting an attacking
teammate, and lacking temporal coherence by rechecking previ-
ously cleared areas or jittering forwards and backwards. Experts
complemented HUMAN on their skilled collaborative movement,
and criticized RULEMOVE and GAMEBOT as bot-like. RULE-
MOVE was too rigid, and GAMEBOT made illogical decisions.

6.3. Quantitative Self-Play Experiments Analysis

Beyond the user study, we provide a quantitative evaluation of the
four player configurations by analyzing the statistics of full rounds
of in-game self-play. Our metrics cover the key properties of move-
ment: map coverage, utilizing expert strategies that avoid low-skill
mistakes, and ensuring that movement yields key outcomes. The
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Figure 6: Median and IQR counts of rounds where at least one
defensive player makes one of two common positioning mistakes
(leaving high ground and leaving an established defensive posi-
tion). MLMOVE makes these mistakes far less often than GAME-
BOT and RULEMOVE.

metrics covering mistakes and teamwork rely on a key insight: ex-
pert human language is the way to measure planning. We quantify
teamwork and mistakes by utilizing expert labels for map regions,
and then quantifying how humans navigate these regions in space
and time. The use of expert terminology to formalize plans sets the
stage for future work on foundation models to plan human move-
ment using expert language. In Section 5.5 of the Supplemental
Material, we quantitatively evaluate the ability of the learned move-
ment model to reproduce humans’ sequences of actions.

We perform our quantitative analysis on 1430 rounds (550 min-
utes) of MLMOVE; this is ∼ 5 − 16× larger than the quantita-
tive analysis on prior CS:GO bots by [PZ22] and on BotPrize bots
by [GFF12], who inspired our use of Earth Mover’s Distance and
position-based metrics. For summary metrics, we report the me-
dian and IQR of the five round iterations discussed in Section 6.1.
For distribution visualizations, we report results from the first iter-
ation for each bot in order to compare distributions with the same
numbers of rounds as HUMAN.

6.3.1. Distribution of Player Positions

Figure 1 shows the distribution of player positions across the first
iteration of 1430 rounds. Each pixel counts the game ticks when
an offense or defense player occupies that location of the map.
Overall, the distributions of the MLMOVE positions appear more
similar to that of HUMAN players than any of the other bot player
configurations, for both the offense and defense teams. The first
row in Table 1 shows that, when measured using earth mover’s dis-
tance [KPT*17], the MLMOVE occupancy distribution (computed
over both the offense and defense teams) is 1.8× and 1.9× more
similar to that of HUMAN play than RULEMOVE and GAMEBOT

respectively. We provide details of how we compute EMD in Sec-
tion 5.3 of the Supplemental Material.

Figure 1 also shows that MLMOVE players exhibit skilled move-
ment characteristics such as positioning themselves to remain out
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Table 2: Median ± IQR absolute percentage error (when counting
instances of flanking and spreading configurations that arise out of
teamwork) of bot players compared to human play data. MLMOVE

more closely matches the human distribution of these multiplayer
teamwork behaviors.

Offense Defense
MLMOVE 27% ±22% 13% ± 14%

RULEMOVE 55% ±29% 42% ±134%
GAMEBOT 58% ±23% 87% ±203%

of enemy sight lines. For example, MLMOVEs stay near the walls
on offense (inset (b)), and close to objects used for cover on defense
(inset (c)), whereas the other bots traverse dangerous areas out in
the open. MLMOVE players also demonstrate a greater diversity
of behaviors than RULEMOVE, where each different behavior must
be scripted. Insets (a) and (d) highlight examples where MLMOVE

echos the diversity of real-world play, but RULEMOVE follows a
limited set of predefined paths.

We also observe situations where MLMOVE produces move-
ment that differs from the human trajectories in important ways. For
example, inspection of Figure 1 suggests that the model fails to turn
corners as sharply as HUMAN. HUMAN’s inset (b) has more paths
near bent walls than MLMOVE’s because the humans can turn
more sharply to follow the bends. We’ve found that MLMOVE’s
turning radius limitation is particularly detrimental in an area of
the map that requires navigating consecutive tight turns followed
by stairs.

6.3.2. Avoiding Common Mistakes

A first trait of “nonhuman” bot behavior is “a lack of common
sense”, which can be measured by the number of “common” mis-
takes. We consider two mistakes: (a) leaving high ground, or (b)
giving up on an established defensive position. To characterize
these mistakes, we identify specific combinations of players’ po-
sitions within regions of the map indicating a defensive advantage
on a game tick. For each such scenario, we compute whether the
defensive players’ regions in the next game tick indicate that they
gave up their advantage. We measure the number of rounds with
at least one mistake. As shown in Figure 6, MLMOVE’s mistake
rate is close to that of human players, and significantly smaller than
those of the other bots.

6.3.3. Teamwork

We analyze the self-play rounds for instances of common forms of
teamwork. Specifically we focus on offense flanking, where multi-
ple players on offense approach the defense from different direc-
tions to catch the defenders off guard. We also count instances of
defense spreading, a tactic where defense players carefully distance
themselves so that each player can cover a different potential attack
direction, while being close enough to quickly reconverge on the
most important actual attack direction.

We identify five unique two-player flanking configurations (in-
volving different combinations of attack directions) and six unique

three-player spreading configurations (covering different attack di-
rections), and count the number of rounds where these configura-
tions are observed. We define each configuration as a combination
of the map regions occupied simultaneously by players on the same
team. We compute the number of rounds with at least one occur-
rence of each configuration.

Table 2 shows that MLMOVE not only exhibits all five flanking
and all six spreading strategies, but it also employs these strate-
gies with a frequency more similar to human play than the non-
learned bots. The median absolute percent error between human
and MLMOVE flanking counts is 27%, far less than 55% and 58%
for RULEMOVE and GAMEBOT respectively. The median absolute
percent error between human and MLMOVE spreading counts is
13%, far less than the 42% and 87% for RULEMOVE and GAME-
BOT respectively. See Section 5.2 of the Supplemental Material for
details on the definitions of and results for the individual flanking
and spreading configurations.

6.3.4. Self-Play Outcomes

Skilled CS:GO players move to advantageous positions that in-
crease the likelihood of eliminating enemies without being elimi-
nated. We hypothesize that if MLMOVE moves similarly to human
players, then we will observe similar distributions of where players
are located when they score kills, how many shots are taken per
enemy kill, and how long players live during rounds.

Kill Locations Figure 7 plots the distribution of positions where
players score kills (shooter locations), separated into offense and
defense teams. Both humans and MLMOVE follow a cover prin-
ciple when shooting enemies: they tend to shoot more frequently
from positions that are protected. In Figure 7(a), both offense hu-
mans and MLMOVE avoid combat in the open areas leading to the
B bombsite, whereas RULEMOVE and GAMEBOT have poor posi-
tioning and engage in these cover-free regions. In Figure 7(b), de-
fense humans, MLMOVE, and RULEMOVE (due to map-specific
rules) primarily score kills from the center of the A bombsite,
where the map contains objects that provide cover. On the other
hand, GAMEBOT scores kills uniformly around the entire bomb-
site. Row 2 of Table 1 quantitatively confirms that the MLMOVE’s
kill location distributions are most similar to human play.

Shots per kill We also observe that rounds involving MLMOVE-
controlled players demonstrate approximately the same distribution
of shots per kill as humans (Figure 8). Although it uses the same
aiming and firing controller as MLMOVE, RULEMOVE produces
a left-sided distribution, indicating fewer shots per kill. RULE-
MOVE’s movement controller tells it to stop moving whenever an
enemy becomes visible to increase its shot accuracy, but this be-
havior is not something all experienced human players would do in
practice or in our training dataset.

Player lifetimes Finally, we observe that rounds involving ML-
MOVE players exhibit a similarly shaped distribution of player life-
times as that of human play (Figure 9). However, we also observe
many more examples of MLMOVE players staying alive for the full
40-second period. We believe this is due to a conservative game
play strategy present in the CSKNOW dataset but not in the Re-
takes test subset. A detailed analysis of this strategy is reported in
Sections 1.1 and 5.6 of the Supplemental Material.
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Figure 8: In CS:GO combat, players attempt to balance conflict-
ing movement goals of staying still (to increase shot accuracy) and
unpredictable movement (to avoid fire). MLMOVE reproduces the
human distribution of shots per kill. RULEMOVE is scripted to stop
prior to shooting, which leads to higher accuracy shots (fewer shots
per kill), but contributes to shorter lifetimes.
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Figure 9: The MLMOVE and GAMEBOT reproduce the human
lifetimes, while RULEMOVE’s tendency to run at the enemy, re-
gardless of the game state, leads to earlier deaths.

6.3.5. Ablations

We validate our movement model’s design choices using ablations
that compare the use of attention and the use of prior states ver-
sus without them. Table 3 shows results for our movement model
(referenced as the default model in this section) in column 2, our
model without attention (NOATTN) in column 3, and our model

with prior player states added to the input (HISTORY) in column 4.
Removing attention decreases model accuracy because the model
fails to learn relationships between players which affect game play
outcomes. NOATTN performs worst on Kill Locations, but also
decreases model accuracy on map occupancy and shots per kill.
Adding prior player states causes the inertia problem where play-
ers repeat their prior actions rather than responding to the dynamic
changes in game states, resulting in worse map occupancy, kill lo-
cations, and lifetimes.

All models in Table 3 have a similar inference latency. Our de-
fault model has a median inference latency of 6.9 ms and IQR of
0.6 ms on one Intel 8375C CPU core, less than 8 ms. Ablations in
Section 5.4 of the Supplemental Material show that increasing the
number of attention layers and the size of the MLPs inside each
attention layer moderately improves map occupancy similarity to
HUMAN distribution while increasing inference latency.

Table 3: Median ± IQR EMD metrics for the ablated learned
movement models. MLMOVE shows our movement model,
NOATTN shows our movement model with all attention masked out,
and HISTORY shows our movement model with prior state added
to model input.

EMD Type MLMOVE NOATTN HISTORY

Map Occupancy 8.2 ± 0.5 10.3 11.8
Kill Locations 6.7 ± 0.1 8.2 7.4

Lifetimes 4.9 ± 0.4 4.6 7.7
Shots Per Kill 2.1 ± 0.1 2.2 1.2

7. Discussion

We present MLMOVE, the first CS:GO bot that uses a learned
movement model for generating team-based, human-like move-
ment that satisfies commercial games’ performance constraints.
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We showed MLMOVE is able to control two full teams of bots
with behaviors that match a range of human game play character-
istics. Human evaluators ranked MLMOVE as more human than
RULEMOVE and GAMEBOT baselines by 16% to 59% according
to TrueSkill ratings. We also performed an exploratory user study
where experts play with and against the bots. While the users re-
ported GAMEBOT as the least human-like, the study was incon-
clusive because users reported being too engrossed in the game to
evaluate other players’ movements in a short, highly controlled ex-
periment.

Our movement model trains in 1.5 hours on a single GPU (attrac-
tive for modern game design workflows). The amortized inference
cost per game step for our model is less than 0.5 ms on a single
CPU core for all players, making it plausible for commercial game
server deployment.

While our work focused on CS:GO, our movement model archi-
tecture and training methodology should generalize to other mul-
tiplayer FPS games as we mainly leveraged common traits of FPS
games in our design (rather than CS:GO specific features). How-
ever, for each new FPS game, a dataset of size and coverage similar
to CSKNOW is needed to train a transformer-based movement con-
troller similar to ours. There might be some game specific changes
needed to the model input and output to match each game’s naviga-
tion features. For example, another game might have four instead of
three speeds or a few more complex movement modes (like climb-
ing along ledges or ropes). To create a full bot for a new FPS game
that shows human-like team-based movement like MLMOVE, one
would also need to build a rule-based execution module similar to
the one we used in MLMOVE that can perform aiming and firing
controls for the new FPS game, then integrate it with the learned
movement model that was customized and trained specifically for
this game.

We also anticipate that our approach to learning human-like
movement from data can generalize to other FPS game actions
and multiple maps. This would require additions to the input and
output tokens; behaviors like firing can be added as parameters
of the output tokens, and multiple maps can be supported by
adding map geometry encoding as input tokens (i.e., Scene Trans-
former [NVC*22]). The main challenges for a more general model
with more parameters and tokens would be data collection, model
tuning, training complexity, and runtime execution efficiency. Fu-
ture work can improve performance by using specialized inference
engines rather than LibTorch, or creating specialized deployable
models (our presented work can be seen as an example) from the
general model by reducing non-essential features.
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